

WEB APPLICATION

PENETRATION TEST

Report for:

Date:

This document contains confidential information about IT
systems and network infrastructure of the customer, as well as
information about potential vulnerabilities and methods of
their exploitation. This confidential information is for
internal use by the customer only and shall not be disclosed
to third parties.

HackControl

info@
hackcontrol.org

https://hackcontrol.org/
mailto:info@hackcontrol.org

Table of Contents

Introduction 2

Executive Summary 3

Team 4

Scope of Security Assessment 4

Methodology 5

Severity Definition 6

Summary of Findings 7

Key Findings 8
Rate limit bypass via X-Forwarded-For 8
Broken Authentication and Session Management 9
Open redirect 10
IDOR for change or remove API-keys 11
Reflected Cross-Site Scripting 13
Email disclosure via Forgot password 15
User enumeration 16
Vulnerability Lucky13 and BREACH 18
Cacheable HTTPS response 19

Appendix A. OWASP Testing Checklist 20

Appendix B. Automated Tools 23

HackControl

info@
hackcontrol.org

Introduction

We thank Client for the opportunity to carry out a security assessment of

the web application. This document describes a methodology, limitations and

results of the assessment.

Executive Summary

Hackcontrol (Provider) was contracted by CLIENT (Customer) to carry out a

penetration test of the Client’s web application.

This report presents findings of the penetration test conducted between

DD/MM/YYYY – DD’/MM’/YYYY.

The main subject of testing is CLIENT`s exchange web system.

Penetration test has the following objectives:

● identify technical and functional vulnerabilities

● evaluate a severity level (ease of use, impact on information systems,
etc);

● make a prioritized list of recommendations to address identified
weaknesses

According to our research after performing the penetration testing, security

rating of CLIENT`s infrastructure was identified as Low.

HackControl

info@
hackcontrol.org

Team

Role Name EMAIL

Project Manager John Doe
(CEH, ISO27001 LA) info@hackcontrol.org

Penetration Testing
Engineer

John Doe
(OSCP, eWPT, eCPPT) engineer@hackcontrol.org

Scope of Security Assessment

The following list of the information systems was the scope of the Security
Assessment.

Name Description

1.

client.com
www.client.com
h5.client.com
openws.client.com
ws-manager.client.com
ws.client.com

gitlab.infra.client.com
registry.infra.client.com
nexus.infra.client.com
wiki.infra.client.com

Web

2.

35.220.000.000
35.240.00.000
35.190.00.000
35.240.00.000
35.220.000.000
130.210.00.00

IP

3.

api.Client.com
openapi.Client.com
(https://github.com/Client/Client-
official-api-docs)

API

HackControl

info@
hackcontrol.org

http://35.241.54.86/
http://35.227.218.162/
http://130.211.39.104/
http://api.bitmart.com/
http://openapi.bitmart.com/
https://github.com/bitmartexchange/bitmart-official-api-docs
https://github.com/bitmartexchange/bitmart-official-api-docs

Methodology

The testing methodology is based on generally accepted industry-wide
approaches to perform penetration testing for web applications (OWASP
Testing Guide);

Application-level penetration tests include, at a minimum, checking for the
following types of vulnerabilities:

● injections, in particular, SQL injections, noSQL, XPath, etc.;
● Local File Inclusion (LFI), Remote File Inclusion (RFI);
● Cros-Site Scripting (XSS);
● errors in access control mechanisms (for example, unsafe direct links

to objects, lack of restriction of access by URL, directory traversal
and lack of restriction of user access rights to functions);

● Cross-Site Request Forgery (CSRF);
● web server configuration errors;
● incorrect error handling;
● Counteracting the compromise of authentication mechanisms and session

management (Session Management Testing);

HackControl

info@
hackcontrol.org

Severity Definition

The level of criticality of each risk is determined based on the potential
impact of loss from successful exploitation as well as ease of exploitation,
existence of exploits in public access and other factors.

Severity Description

High

High-level vulnerabilities are easy in exploitation and
may provide an attacker with full control of the
affected systems, also may lead to significant data loss
or downtime. There are exploits or PoC available in
public access.

Medium

Medium-level vulnerabilities are much harder to exploit
and may not provide the same access to affected systems.
No exploits or PoCs available in public access.
Exploitation provides only very limited access.

Low

Low-level vulnerabilities provide an attacker with
information that may assist them in conducting
subsequent attacks against target information systems
or against other information systems, which belong to
an organization. Exploitation is extremely difficult,
or impact is minimal.

Info
These vulnerabilities are informational and can be
ignored.

HackControl

info@
hackcontrol.org

Summary of Findings

According to the following in-depth testing of the environment, CLIENT’s
web application require some improvements.

Value Number of risks

High 5

Medium 2

Low 1

Info 1

Based on our understanding of the IT Infrastructure, as well as the nature
of the vulnerabilities discovered, their exploitability, and the potential
impact we have assessed the level of risk for your organization to be High.

6
5

7 4 8 3 2 1
0

9
10

Highly Insecure Highly Secure

Low Security Rating

HackControl

info@
hackcontrol.org

Key Findings

 Rate limit bypass via X-Forwarded-For

#1 Description Type: Real

X-Forwarded-For is a well-established HTTP header used by proxies, to pass
along other IP addresses in the request. This is often the same as CF-
Connecting-IP, but there may be multiple layers of proxies in a request
path.

There is dynamically changing value can attackers do brute force 6-digits
approve code and other attacks witch based on brute force method.

Evidences

Steps to reproduce:
1. Get request for restore password
2. Input some code
3. Intercept request and set header X-Forwarded-For with something value
4. The count of the number of attempts will be restored to the initial

value

Request:

Recommendations
● Check value of headers
● Add a “one-time token”

HackControl

info@
hackcontrol.org

 Broken Authentication and Session Management

#2 Description Type: Real

Incorrect logic in the transfer of the session between domains allows to
intercept user session.

The WebSocket application at client.com is responsible for mediating the
session for the main casino application, which can be located on one of the
mirrors, for example at client.com and client.com.

This functionality is used to dynamically transfer the session to different
mirrors, which allows the user not to log into the system every time when
changing such a mirror. Also, the websocket of the application on client.com
does not have a built-in validation of the domain from which the session
request comes, which allows to get a user session for any domain.

An example of such session interception is located at
https://ps29.net/client-dwju3726ks/. This page contains the
authorization.js (https://www.client.com/files/js/authorization.js) code
that pinup uses for authorization.

Evidences
Steps to reproduce:

1. Login to any account on client domain
2. Go to https://ps29.net/client-dwju3726ks/

Recommendations
● Add domain validation

HackControl

info@
hackcontrol.org

 Open redirect

#3 Description Type: Real

Open redirection in the inter-domain session transfer functionality that
allows to issue a session for a malicious domain. The application
/v2/verify/ is responsible for issuing a session for the main casino
application, which can be located at one of the mirrors, for example,
client.com and client.com. This functionality is used to dynamically
transfer the session to different mirrors, which allows the user not to log
into the system every time when changing such a mirror.

Evidences

Steps to reproduce:
https://client.com/v2/verify/<login>/<hash>?url=<currentUrl>&domain=<orig
in>

Open redirection in the domain parameter allows to get a user session for
any domain. The following link was used to illustrate this vulnerability.
https://client.com/v2/verify/x/x?url=x&domain=../../../%5Cexample.com/

Response:
HTTP/1.1 302 Found
Server: nginx
Date: Mon, 17 Dec 2018 13:56:50 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 195
Connection: keep-alive
Location:
/\example.com/crossdomain/set/1599129/43875a650f865a828e14e133bba1a
0987145adba0b72361dcb919618a1c0d51a0cf2369f51e13c5487b3b1069d8d1948
34c49cf517a46b2cb3250e1f9e8a76a0?url=x

Recommendations ● Add a “one-time token” or set up rate limits
for this request

HackControl

info@
hackcontrol.org

https://client.com/v2/verify/

 IDOR for change or remove API-keys

#4 Description Type: Real

Insecure Direct Object References occur when an application provides direct
access to objects based on user-supplied input. As a result of this
vulnerability attackers can bypass authorization and access resources in
the system directly, for example database records or files. Insecure Direct
Object References allow attackers to bypass authorization and access
resources directly by modifying the value of a parameter used to directly
point to an object. Such resources can be database entries belonging to
other users, files in the system, and more. This is caused by the fact that
the application takes user supplied input and uses it to retrieve an object
without performing sufficient authorization checks.

There is possibility to change another API-keys by just change id value.
There is no session or access checking for this operation. No current The
attacker can access, edit or delete any of other user`s API-keys by changing
the values.

Evidences

Steps to reproduce:
1. Go to https://www.Client.com/api/en in Chrome and open dev tools.
2. In Sources open

https://www.client.com/_nuxt/pages/api/_lang/index.4f6ab73061981ec9
a06e.js and choose pretty-print.

3. Set breakpoint in line 2

4. Press Edit across one of your keys, input new data, 2FA-code and

send requests
5. In the same time breakpoint trigger is work. You can change in id-

field and resume script work

HackControl

info@
hackcontrol.org

Recommendations

● It is not recommended to use
any id for request,
especially like user id, it
is better to use session
management keys (cookies for
example) and identify user
by session keys. Also every
operation has to be checked
for permission access for
current user and his
permissions. For more
details please visit:
https://www.owasp.org/index.
php/Top_10_2013-A4-
Insecure_Direct_Object_Refer
ences

HackControl

info@
hackcontrol.org

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References

 Reflected Cross-Site Scripting

#5 Description Type: Real

Cross-Site Scripting (XSS) attacks are a type of injection, in which
malicious scripts are injected into otherwise benign and trusted web sites.
XSS attacks occur when an attacker uses a web application to send malicious
code, generally in the form of a browser side script, to a different end
user. Flaws that allow these attacks to succeed are quite widespread and
occur anywhere a web application uses input from a user within the output
it generates without validating or encoding it.

An attacker can use XSS to send a malicious script to an unsuspecting user.
The end user’s browser has no way to know that the script should not be
trusted, and will execute the script. Because it thinks the script came
from a trusted source, the malicious script can access any cookies, session
tokens, or other sensitive information retained by the browser and used
with that site. These scripts can even rewrite the content of the HTML
page.

There were found 2 Real (Validated) XSS.

Evidences

Steps to reproduce:
1. Reflected XSS in url https://www.client.com/store/

/listing/56043001flc4q%253c%252fscript%253e%253cscript%253ealert%25
281%2529%253c%252fscript%253eohbx8

2. Reflected XSS in x-ncpl-csrf anti CSRF token. Change value of x-
ncpl-csrf anti CSRF token to x-ncpl-
csrf=44cab53c34ff44f6bc1993d42bbe9bfbkz4tu%22%3e%3cscript%3ealert(1
)%3c%2fscript%3ef7ncy

Recommendations ● It is not recommended to use any id for request,
especially like user id, it is better to use

HackControl

info@
hackcontrol.org

session management keys (cookies for example) and
identify user by session keys. Also every
operation has to be checked for permission access
for current user and his permissions. For more
details please visit:
https://www.owasp.org/index.php/Top_10_2013-A4-
Insecure_Direct_Object_References

 HackControl

info@
hackcontrol.org

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References

 Email disclosure via Forgot password

#6 Description Type: Real

It is possible to get information about registered e-mail.

Evidences

Steps to reproduce:
1. Go to page https://www.Client.com/forget/ru

Response:

Recommendations ● Shouldn`t show the email address when restore
a password via the phone.

HackControl

info@
hackcontrol.org

 User enumeration

#7 Description Type: Real

The scope of this test is to verify whether it’s possible to collect a set
of valid usernames by interacting with the authentication mechanism of the
application. This test will be useful for a brute force testing, in which
we verify if, given a valid username, it’s possible to find a corresponding
password. Often, web applications reveal when a username exists in a system,
either as a consequence of a misconfiguration or as a design decision.

For example, sometimes, when we submit wrong credentials, we receive a
message stating that either the username is present in the system or the
provided password is wrong. The information obtained can be used by an
attacker to gain a list of users in the system. This information can be
used to attack the web application, for example, through a brute force or
default username/password attack.

Evidences

Steps to reproduce:
1. Intercept request POST /api/user_findPwd
2. Send request to Intruder
3. Set payload to loginName=<email>&loginType=1&pwdType=0
4. Run attack

HackControl

info@
hackcontrol.org

Recommendations ● It’s recommended not to show whether the
user is logged in the system or not

HackControl

info@
hackcontrol.org

 Vulnerability Lucky13 and BREACH

#8 Description Type: Potential

BREACH

Short for Browser Exploit Against SSL/TLS, BREACH is a browser exploit
against SSL/TLS that was revealed in late September 2011. This attack
leverages weaknesses in cipher block chaining (CBC) to exploit the Secure
Sockets Layer (SSL)/Transport Layer Security (TLS) protocol. The CBC
vulnerability can enable man-in-the-middle (MITM) attacks against SSL in
order to silently decrypt and obtain authentication tokens, thereby
providing hackers access to data passed between a Web server and the Web
browser accessing the server.

LUCKY13

The TLS 1.1 and 1.2 protocols and the DTLS 1.0 and 1.2 protocols, as used
in OpenSSL, OpenJDK, PolarSSL, and other products, do not properly consider
timing side-channel attacks on a MAC check requirement during the processing
of malformed CBC padding. This allows remote attackers to conduct
distinguishing attacks and plaintext-recovery attacks via statistical
analysis of timing data for crafted packets, aka the "Lucky Thirteen" issue.

Evidences

Scanning https://www.client.com vith SSLscan

HackControl

info@
hackcontrol.org

Recommendations

● Disable TLS 1.0 and make user connections using
TLS 1.1 or TLS 1.2 protocols which are immune to
the BEAST attack. TLS 1.0 is now considered
insecure. Disabling the TLS 1.0 protocol improves
the overall security.

● Avoid using TLS in CBC-mode and switch to AEAD
algorithms.

 Cacheable HTTPS response

#9 Description Type: Real

Unless directed otherwise, browsers may store a local cached copy of content
received from web servers. Some browsers, including Internet Explorer,
cache content accessed via HTTPS. If sensitive information in application
responses is stored in the local cache, then this may be retrieved by other
users who have access to the same computer at a future time.(Cache-control:
no-store, Pragma: no-cache)

Recommendations
Add the following headers:

● Cache-control: no-store
● Pragma: no-cache

HackControl

info@
hackcontrol.org

Appendix A. OWASP Testing Checklist

Category Test Name Result
Information Gathering

OTG-INFO-001 Conduct Search Engine Discovery and
Reconnaissance for Information Leakage

Tested

OTG-INFO-002 Fingerprint Web Server Tested
OTG-INFO-003 Review Webserver Metafiles for Information

Leakage
Tested

OTG-INFO-004 Enumerate Applications on Webserver Tested
OTG-INFO-005 Review Webpage Comments and Metadata for

Information Leakage
Tested

OTG-INFO-006 Identify application entry points Tested
OTG-INFO-007 Map execution paths through application Tested
OTG-INFO-008 Fingerprint Web Application Framework Tested
OTG-INFO-009 Fingerprint Web Application Tested
OTG-INFO-010 WAF Tested

Configuration and Deploy Management Testing
OTG-CONFIG-001 Test Network/Infrastructure Configuration Tested
OTG-CONFIG-002 Test Application Platform Configuration Tested
OTG-CONFIG-003 Test File Extensions Handling for Sensitive

Information
Tested

OTG-CONFIG-004 Backup and Unreferenced Files for Sensitive
Information

Tested

OTG-CONFIG-005 Enumerate Infrastructure and Application
Admin Interfaces

Tested

OTG-CONFIG-006 Test HTTP Methods Tested
OTG-CONFIG-007 Test HTTP Strict Transport Security Tested
OTG-CONFIG-008 Test RIA cross domain policy Tested

Identity Management Testing
OTG-IDENT-001 Test Role Definitions N/A
OTG-IDENT-002 Test User Registration Process Tested
OTG-IDENT-003 Test Account Provisioning Process N/A
OTG-IDENT-004 Testing for Account Enumeration and

Guessable User Account
Tested

OTG-IDENT-005 Testing for Weak or unenforced username
policy

Tested

OTG-IDENT-006 Test Permissions of Guest/Training Accounts N/A
OTG-IDENT-007 Test Account Suspension/Resumption Process Tested

Authentication Testing
OTG-AUTHN-001 Testing for Credentials Transported over an

Encrypted Channel
Tested

OTG-AUTHN-002 Testing for default credentials N/A
OTG-AUTHN-003 Testing for Weak lock out mechanism Tested
OTG-AUTHN-004 Testing for bypassing authentication schema Tested
OTG-AUTHN-005 Test remember password functionality Tested
OTG-AUTHN-006 Testing for Browser cache weakness Tested
OTG-AUTHN-007 Testing for Weak password policy Tested
OTG-AUTHN-008 Testing for Weak security question/answer Tested
OTG-AUTHN-009 Testing for weak password change or reset

functionalities
Tested

HackControl

info@
hackcontrol.org

OTG-AUTHN-010
Testing for Weaker authentication in
alternative channel

Tested

Authorization Testing
OTG-AUTHZ-001 Testing Directory traversal/file include Tested
OTG-AUTHZ-002 Testing for bypassing authorization schema Tested
OTG-AUTHZ-003 Testing for Privilege Escalation Tested
OTG-AUTHZ-004 Testing for Insecure Direct Object

References
Tested

Session Management Testing

OTG-SESS-001
Testing for Bypassing Session Management
Schema

Tested

OTG-SESS-002 Testing for Cookies attributes Tested
OTG-SESS-003 Testing for Session Fixation Tested
OTG-SESS-004 Testing for Exposed Session Variables Tested
OTG-SESS-005 Testing for Cross Site Request Forgery Tested
OTG-SESS-006 Testing for logout functionality Tested
OTG-SESS-007 Test Session Timeout Tested
OTG-SESS-008 Testing for Session puzzling Tested

Data Validation Testing
OTG-INPVAL-001 Testing for Reflected Cross Site Scripting Tested
OTG-INPVAL-002 Testing for Stored Cross Site Scripting Tested
OTG-INPVAL-003 Testing for HTTP Verb Tampering Tested
OTG-INPVAL-004 Testing for HTTP Parameter pollution Tested
OTG-INPVAL-005 Testing for SQL Injection Tested
OTG-INPVAL-006 Testing for LDAP Injection Tested
OTG-INPVAL-007 Testing for ORM Injection Tested
OTG-INPVAL-008 Testing for XML Injection Tested
OTG-INPVAL-009 Testing for SSI Injection Tested
OTG-INPVAL-010 Testing for XPath Injection Tested
OTG-INPVAL-011 IMAP/SMTP Injection Tested
OTG-INPVAL-012 Testing for Code Injection Tested
OTG-INPVAL-013 Testing for Command Injection Tested
OOTG-INPVAL-014 Testing for Buffer overflow Tested
OTG-INPVAL-015 Testing for incubated vulnerabilities Tested
OTG-INPVAL-016 Testing for HTTP Splitting/Smuggling Tested

Error Handling
OTG-ERR-001 Analysis of Error Codes Tested
OTG-ERR-002 Analysis of Stack Traces Tested

Cryptography
OTG-CRYPST-001 Testing for Weak SSL/TSL Ciphers,

Insufficient Transport Layer Protection
Tested

OTG-CRYPST-002 Testing for Padding Oracle Tested
OTG-CRYPST-003 Testing for Sensitive information sent via

unencrypted channels
Tested

Business Logic Testing
OTG-BUSLOGIC-001 Test Business Logic Data Validation Tested
OTG-BUSLOGIC-002 Test Ability to Forge Requests Tested
OTG-BUSLOGIC-003 Test Integrity Checks Tested
OTG-BUSLOGIC-004 Test for Process Timing Tested
OTG-BUSLOGIC-005 Test Number of Times a Function Can be Used

Limits
Tested

OTG-BUSLOGIC-006 Testing for the Circumvention of Work Flows Tested
OTG-BUSLOGIC-007 Test Defenses Against Application Mis-use Tested

HackControl

info@
hackcontrol.org

OTG-BUSLOGIC-008 Test Upload of Unexpected File Types Tested
OTG-BUSLOGIC-009 Test Upload of Malicious Files Tested

Client Side Testing
OTG-CLIENT-001 Testing for DOM based Cross Site Scripting Tested
OTG-CLIENT-002 Testing for JavaScript Execution Tested
OTG-CLIENT-003 Testing for HTML Injection Tested
OTG-CLIENT-004 Testing for Client Side URL Redirect Tested
OTG-CLIENT-005 Testing for CSS Injection Tested
OTG-CLIENT-006 Testing for Client Side Resource

Manipulation
Tested

OTG-CLIENT-007 Test Cross Origin Resource Sharing Tested
OTG-CLIENT-008 Testing for Cross Site Flashing Tested
OTG-CLIENT-009 Testing for Clickjacking Tested
OTG-CLIENT-010 Testing WebSockets Tested
OTG-CLIENT-011 Test Web Messaging Tested
OTG-CLIENT-012 Test Local Storage Tested

HackControl

info@
hackcontrol.org

Appendix B. Automated Tools

Scope Tools Used

Application Security Acunetix 11
BurpSuite 1.7.30
Owasp-zap
Maltego Classic
Detectify
Sqlmap

Network Security Nmap
Recon-ng
Nessus
Nexpose

HackControl

info@
hackcontrol.org

	Introduction
	Executive Summary
	Team
	Scope of Security Assessment
	Methodology
	Severity Definition
	Summary of Findings
	Key Findings
	Rate limit bypass via X-Forwarded-For
	Broken Authentication and Session Management
	Open redirect
	IDOR for change or remove API-keys
	Reflected Cross-Site Scripting
	Email disclosure via Forgot password
	User enumeration
	Vulnerability Lucky13 and BREACH
	Cacheable HTTPS response

	Appendix A. OWASP Testing Checklist
	Appendix B. Automated Tools

